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Fig. 1: In this work, we compare four methods for eliciting visualization affordances from three canonical chart types (dot, line, and
heatmap). In a case study, we also evaluate GPT-4o on its ability to capture affordances by comparing its output to human responses.

Abstract—A growing body of work on visualization affordances highlights how specific design choices shape reader takeaways
from information visualizations. However, mapping the relationship between design choices and reader conclusions often requires
labor-intensive crowdsourced studies, generating large corpora of free-response text for analysis. To address this challenge, we
explored alternative scalable research methodologies to assess chart affordances. We test four elicitation methods from human-subject
studies: free response, visualization ranking, conclusion ranking, and salience rating, and compare their effectiveness in eliciting
reader interpretations of line charts, dot plots, and heatmaps. Overall, we find that while no method fully replicates affordances
observed in free-response conclusions, combinations of ranking and rating methods can serve as an effective proxy at a broad scale.
The two ranking methodologies were influenced by participant bias towards certain chart types and the comparison of suggested
conclusions. Rating conclusion salience could not capture the specific variations between chart types observed in the other methods.
To supplement this work, we present a case study with GPT-4o, exploring the use of large language models (LLMs) to elicit human-like
chart interpretations. This aligns with recent academic interest in leveraging LLMs as proxies for human participants to improve data
collection and analysis efficiency. GPT-4o performed best as a human proxy for the salience rating methodology but suffered from
severe constraints in other areas. Overall, the discrepancies in affordances we found between various elicitation methodologies,
including GPT-4o, highlight the importance of intentionally selecting and combining methods and evaluating trade-offs.

Index Terms—Information visualizations, affordances, methodology, conclusions, large-language models.

1 INTRODUCTION

The ‘right’ visualization design allows a viewer to derive clear take-
aways from even complex data [27]. Choices in visual encoding, such
as spatial arrangements or color manipulations, can significantly in-
fluence what people compare and take away from data [7, 25]. For
example, bar charts depicting income distributions naturally emphasize
a comparison of bar heights. Viewers will tend to focus on grouping
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and averaging incomes, often leading to an overly general takeaway:
everyone in one group earns more than those in another [36]. This can
potentially reinforce stereotypes about group differences. In contrast,
a jittered dot plot of the same data shifts attention to individual data
points and within-group variability, leading to more nuanced takeaways
and reducing the likelihood of stereotypical judgments.

Visualization researchers have long sought to map the relationship
between design choices and reader takeaways, including what data
points they compare, patterns they notice, and decisions they make [12,
25]. We refer to these relationships as visualization affordances [10,66].
A visualization affordance is the unique link between a design choice
and what readers take away from the presented information [18].

Understanding visualization affordances typically requires re-
searchers to conduct extensive empirical studies and collect large cor-
pora of qualitative data on human responses [25]. Interpreting these
responses is not only labor-intensive but also fraught with ambiguity.
For example, lexically, a term like ‘spread’ may refer to variability (i.e.,
how many clusters of points are dispersed across the chart) or range
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(i.e., the difference between the highest and lowest values). Seman-
tically, a statement such as “compared to Paper B, Paper A received
a higher score from Reviewers 1 and 2,” could imply either a com-
bined comparison across papers or an individual comparison between
scores from each reviewer [76]. These ambiguities in human responses
describing their takeaways require manual reviews to be deciphered,
which limits the scalability of affordances studies, and subsequently,
our systematic understanding of affordances in visualizations.

Therefore, we investigate alternative research methods to col-
lect chart takeaways at scale, aiming to increase the efficiency of
studying visualization affordances. We compare four takeaway elici-
tation methods: free responses, chart ranking, conclusion ranking, and
salience rating. If the last three methods generate comparable outcomes
of chart takeaways to the in-depth free response method, they offer a
scalable and efficient way to study visualization affordances.

As an additional exploration for efficient research data collection,
we conduct a brief case study on how a Large Language Model (LLM)
would respond to similar visualization interpretation prompts. In re-
cent years, researchers have explored using such models as proxies for
human subjects in empirical studies [21], including strategies for gener-
ating synthetic research data [5,26,30,38]. While LLMs offer powerful
computational capabilities, their effectiveness as human proxies – par-
ticularly in visualization research – remains debated [8, 31, 37, 74] To
contribute to the debate, we evaluate the efficacy of a state-of-the-art
LLM (OpenAI’s GPT-4o [1]) as a human proxy for visualization affor-
dance studies, across all variations of affordance elicitation methodolo-
gies examined for humans. We identify the limitations and capabilities
of using LLMs as a research tool to study visualization affordances.
Contribution: We contribute: (1) A comparison of four research
methodologies, exploring their trade-offs and implications for effec-
tively studying visualization affordances. (2) Five data-driven factors
to categorize human takeaways from visualization: Points, Small
Trends, Shape, Large Trends, and Clusters, based on results from
a series of human-subject studies. (3) Suggested affordances for differ-
ent chart types according to converging evidence across four methods.
(4) A case study evaluating the capability of OpenAI’s GPT-4o to match
the behavior of human participants in visualization affordance studies.

2 RELATED WORKS

Visualization design shapes the type of information people extract and
the inferences they draw from data. Foundational work in exploratory
data analysis by Tukey [73] and empirical studies by Cleveland and
McGill [17] demonstrated that different graphical encodings vary in
their effectiveness at conveying specific data patterns. Building on these
early insights, visualization researchers have extensively examined how
our visual system enables rapid extraction of aggregate statistics from
visualizations [69], supporting tasks such as judging correlations in
scatterplots [32, 54] and assessing probabilities [49].

2.1 Visualization Affordances
Recent work has defined visual affordances as the “perceivable possi-
bilities for visual tasks” [25] that a visualization presents to a reader.
Even basic design choices, such as selecting a chart type, can alter
the affordances of a visualization and, therefore, what a viewer takes
away from the data [17]. Thoughtful design choices can strengthen the
communicative power of visualizations [48], while poor design choices
can obscure or distort the intended message in a visualization [14, 65].

Existing work has begun to synthesize common design best prac-
tices and empirical findings into structured guidelines for improving
visual data communication [42, 46]. For example, bar charts encourage
readers to make magnitude comparisons (“A is larger than B”), while a
line graph highlights changes over time, (“A is increasing at a higher
rate than B”) [7]. Visualizations that aggregate data points (e.g., bar
charts) can lead viewers to infer causality, whereas those that display
probabilistic outcomes (e.g., scattplots), promote a better understand-
ing of uncertainty [36, 39]. However, compared to more conventional
visualizations, probabilistic visualizations (e.g., quantile dot plots)
can undermine trust and confidence, likely due to unfamiliarity [78].
In addition to chart types, color and shape selection also influence

reader perceptions. Choosing colors that are most semantically aligned
with viewers’ mental models will increase information processing effi-
ciency [58, 60]. Choosing the ’right’ sets of shapes for categorical data
simplifies comparative analyses in multi-class datasets [35, 72].

Since visualization design influences patterns viewers see, it follows
that these patterns influence viewer takeaways and decisions [78,82]. In
a study evaluating risk representations in a wildfire scenario, researchers
found that participants were more likely to evacuate when using icon
arrays with fewer icons compared to those with more icons [45]. People
seem to focus on the denominator of icon arrays, interpreting a larger
number of icons as a ‘less risky’ scenario [57].

2.2 Methods for Understanding Visualization Affordances
In this work, we investigate methods for eliciting the information read-
ers extract from a visualization, which we refer to as ‘chart takeaways.’
Battle and Ottley [6] described chart takeaways as a type of insight,
along with data facts (e.g., “a unit of discovery” [56]), hypotheses, or
links connecting findings from data with existing knowledge (e.g., “a
complex, deep, qualitative, unexpected, and relevant assertion” [52]).

Strategies for studying chart takeaways typically include qualita-
tively coding textual responses [79] or visualizations drawn from textual
descriptions [79], as well as analyzing quantitative ratings of cognitive
factors such as trust via Likert scales [64]. Coding text responses can
be labor-intensive and contain lexical or semantic ambiguities [76],
while Likert scale ratings can fail to capture nuanced details about
the specific takeaway messages. Most recently, Fygenson et al. have
taken a chart-selection approach specifically for capturing visualization
affordances, asking study participants to complete a presented message
(using a fill-in-the-blank format) and then select one of four chart types
that best represented the resulting message [25].

In our investigation, we begin by assuming that the best methodol-
ogy for capturing visualization affordances is through a free-response
task that provides rich information about “the message(s) that readers
tend to extract from a visualization” [25]. To address the shortcomings
of the free-response task as a benchmark, we evaluate three method-
ologies for capturing visualization affordances: ranking charts for a
given conclusion, ranking conclusions for a given chart, and rating
the saliency of a conclusion for a given chart. Each method is aimed
towards being less time-consuming and subject to fewer ambiguities
while still capturing visualization affordances.

2.3 Large Language Models for Visualization Interpretation
Researchers have begun to explore the extent to which Large Language
Models (LLMs), which are advanced statistical models pre-trained on
vast corpora of natural language data, can enhance research workflows.
Recent advancements have paved the way to leverage LLMs for visual
analytics [43, 80], and visualization researchers have developed bench-
marks for characterizing LLM performance across various tasks and
evaluation criteria [16]. For instance, tools such as LEVA use LLMs to
enhance analytics through three stages of visual analysis: onboarding,
exploration, and summarization [81].

As another use case of LLMs, HCI and visualization researchers have
proposed using LLMs as proxies for human participants in empirical
studies [21,31]. While LLMs can approximate certain response patterns,
such as binary ratings in moral judgments [21], behavior predictions
in economic decision tasks [26, 38], and reactions to public health
messages [20], they often fall short in capturing the full nuance of
human behavior. LLMs can also complete visualization literacy tasks [8,
37,77], but they are prone to hallucinations and inconsistencies [28,30].
They can sometimes struggle to accurately emulate human response to
spatial manipulations and visual structures in visualizations [76], and
instead focus more on the dataset’s topic [74]. Despite these limitations,
LLMs offer promising opportunities to reduce study time and costs,
while enhancing research efficiency, scalability, and applicability.

Given that a core motivation of this work is to explore tractable
alternative methodologies for capturing visualization affordances while
maintaining response quality comparable to free-response data, we
devote a portion of our investigation to exploring how well a state-
of-the-art LLM can perform in predicting visualization affordances.



In Sec. 9 we present a case study using GPT-4o [1] out-of-the-box to
determine a baseline of LLM capabilities for this context.

3 OVERVIEW

We compare methods for capturing the affordances of three canonical
chart types [10]: dot plots, heatmaps, and line charts. Based on prior
work, we select the following four methods: free-response [76, 79],
ranking chart types for a given conclusion [25], ranking conclusions
for a given chart type, and rating the saliency of a given conclusion for
a given chart [24, 34]. Figure 1 shows a summary of the main findings.
The flow of this paper is as follows:

Preliminary Study. We first assess reader percepts across charts,
characterizing types of affordances that readers derive from a visual-
ization. Results revealed five factors that broadly categorize readers’
perceptions of visualizations, which we use in our subsequent experi-
ments to characterize the types of visualization affordances.

Study 1: Free-Response. We examine affordances through free-
response to establish a benchmark mapping between chart types and
takeaways. Participants reported takeaways using natural language, and
we coded them using the factors identified in the preliminary study.

Study 2: Rank Charts. We examine affordances through a ranking
task to compare against the benchmark established in Study 1. Partic-
ipants ranked a set of charts based on how well each one highlighted
a given takeaway. While some affordances aligned with those from
Study 1, we also observed a moderate correlation between rankings
and participants’ familiarity with the chart types.

Study 3: Rank Takeaways. Participants ranked five takeaways,
each reflecting one of the five factors, based on a given chart. The results
were generally comparable to Study 1 with minor inconsistencies.

Study 4: Rate Salience. Participants viewed chart-takeaway pairs
and provided scalar ratings of salience. We did not observe any distinct
chart affordances with this method.

Case Study: GPT-4o. Given recent exploration on whether large
language models (LLMs) can serve as stand-ins for human participants
in empirical studies [5,21,26,30,31,38], as well as the increasing incor-
poration of LLMs in visual analytics systems [19, 80], we investigate
how a state-of-the-art LLM (GPT-4o) performs across all methodolo-
gies tested with human participants. We prompted GPT-4o with the
same information provided to study participants. Overall, human and
GPT-4o responses diverged notably, echoing prior work on LLM limita-
tions [74], though some overlap suggests potential for improving their
use as human proxies in visualization research.

4 PRELIMINARY STUDY: CHART TAKEAWAY FACTORS

We conducted a preliminary study to develop a framework for assessing
visualization affordances. We used a crowdsourced set of conclu-
sions for canonical chart types including dot plots, line charts, and
heatmaps [9], since line charts and dot plots are common for time-
series data, and heatmaps differ from position-based charts through
the use of color encoding. We identified common patterns noticed in
these visualizations through both theory-driven and data-driven quali-
tative coding. We grouped these patterns into five classes (factors) of
takeaways based on a data-driven factor analysis. These five factors
defined our affordance space and served as the foundation for detecting
visualization affordances throughout our investigations.

4.1 Study Design
Participants. We recruited 62 participants through the online crowd-
sourcing platform Prolific [50], compensating them $7.13 for a 45-
minute survey. Participants completed the study in Qualtrics [63].
Stimuli. We created stimuli for this study from three datasets, each
with perceptually different trends, as recommended by Fygenson et
al. [25]. The first dataset featured an increasing trend grouped into three
groups of relatively stagnant revenue. The second dataset also had an
increasing trend but was divided into six shorter groups of flat revenue
(Figure 2 displays this dataset). The third dataset displayed sharp
increases and decreases with no overall net change. Charts depicted the
revenue (y-axis) of fictional companies over 18 years (x-axis).

Procedure. First, participants completed two practice trials using
unique datasets to familiarize themselves with the task. After complet-
ing the practice trials, each participant viewed six charts, evenly divided
between dot plots, line charts, and heatmaps. We randomized the chart
types and underlying datasets to control for order effects. Participants
never viewed two consecutive charts of the same type.

For each chart, participants were asked to type their first takeaway.
After entering the takeaway, participants reported the range of years
their responses referred to. We prompted them to repeat this process
for a second and a third takeaway before moving on to the next chart.
Participants completed short distractor tasks in between the charts they
viewed. At the end of the study, participants reported demographic in-
formation. The survey also included three attention checks. Participants
who failed any attention checks were excluded from analysis.

4.2 Category Schemes
We categorized participant takeaways in two steps. We began with an
open coding of participant responses, identifying 49 ‘percept codes’
that referenced similar data features such as an increasing trend over
time. For example, the statements ‘Company sales have increased
from the start’ and ‘Revenue has doubled over 18 years’ both describe
upward trends and would therefore be assigned the same percept code.

We then applied a series of axial codes to the conclusions. We
repeated this with multiple coding schemes from the psychology lit-
erature and taxonomies in visualization research [13, 59, 61, 70], see
below. Specific codes and/or descriptions have been omitted for space
considerations but can be found in supplementary materials.

• Unit Reason: Constructed based on visual search processes [71];
included information on the unit the participant selected (e.g., a
data point, a subset of data), the property of the unit described
(e.g., trend), and the operations performed with or across units
(e.g., comparison of similar units).

• Perceptual Tasks: Based on the perceptual task taxonomy from
Amar et al. [4]; in its original state, some tasks required partic-
ipants to identify specific values (e.g., filter, compute derived
value). We adapted this taxonomy to better encompass natural
language conclusions: value, prediction, mean, extreme, range,
distribution, anomaly, cluster, trend, difference, and compare.

• Global vs. Local Perceptual Scope: Grounded in perceptual
psychology research [7, 47], which shows that viewers tend to
first process broader global shapes before local components. This
scheme categorized each conclusion as global or local in scope,
such as whether the response used the entire dataset, a subset of
data, or a single point.

• Intuitive Task: Derived from a data-driven thematic analysis
that clustered into ten codes: overall trend, pieces trend, shape,
end point comparison, other point comparison, drastic change,
within group value, within group relation, between group value,
and between group relation.

4.3 Consolidating via Factor Analysis
We collected 1,161 participant responses (390 from dot plots, 384 from
heatmaps, and 387 from line charts). We conducted an exploratory fac-
tor analysis across the aforementioned coding schemes to consolidate
the takeaways participants wrote as an expression of visualization affor-
dance types. The factor analysis was done in R Studio using the Psych
R package [55] and can be found in the supplementary materials.

We compared the empirical Bayesian information criterion (BIC)
and model complexity of factor models consisting of 1 to 9 factors.
We also examined how factors within each model correlated with each
other and within each factor. Based on the balance of attributes, we
decided to apply the five factor model to our codes. The five factors
comprised (see Fig. 2 for examples):

Large Trends: Summarizes global trends across the full dataset, in-
cluding predictions about future data points or overall averages.

Small Trends: Highlights short-term changes or local fluctuations
across subsets of the data, including large changes between adja-
cent points (e.g., spikes)



Large Trends

Overall, revenue did

not change.

Small Trends

Sales decreased from

 years 5-10.

Shapes

Years 1-4 and 13-16

 had similar patterns.

Points

Year 15 was the 
highest.

Clusters

Sales were similar in


Years 1-4 and 13-16

Fig. 2: Types of conclusions surfaced from exploratory factor analysis along with an example conclusion and chart image highlighting the conclusion.

Shape: Description of overall shapes or patterns within the data distri-
bution or subsets of data.

Points: Identifies individual data points and values, often the global
or local maxima or minima.

Clusters: Groups data with similar values or visually similar regions
within the chart.

4.4 Expanding Stimuli Set

Informed by our preliminary study, we expanded the stimuli set to in-
crease the generalizability of the following studies. We reviewed all bar,
line, dot, and area charts from the MASSVIS “targets393” dataset [11].
The first author sorted them into groups based on similar data trends
using a card sorting procedure, distilling 29 distinct data patterns. After
further review, we collaboratively condensed this set to 15 patterns by
removing overly similar variations. These patterns include monotonic,
oscillating, and step-like shapes to capture structural diversity. We
continued to use line charts, dot plots, and heatmaps in our follow-up
studies to ensure comparability with prior work [10]. We also abstracted
away elements of MASSVIS designs such as text annotations, since
text elements can influence reader interpretations [67]. Our final stimuli
set consisted of 45 total charts (3 chart types x 15 datasets); examples
can be seen in Fig. 3. This set allowed us to increase dataset variation
while keeping the stimuli rooted in real-world data.

5 STUDY 1: FREE RESPONSE

This study established a foundational benchmark for assessing visu-
alization affordances by collecting free-response takeaways from par-
ticipants. Participants were shown a randomly selected chart and re-
sponded with their primary takeaway. After coding and analyzing these
responses, we identified distinct affordance patterns, shown in Fig. 4:
heatmaps tended to elicit Clusters, dot plots emphasized Shape, and
line charts afforded Small Trends. These differences provide a crit-
ical baseline for comparing alternative elicitation methods. Further
details can be found in the supplementary materials.

5.1 Participants and Procedure

Using G*Power [23] for power analysis with pilot data, we determined
that a sample size of 700 participants would provide 85% power at
α = 0.05. We recruited 770 participants via Prolific [50], filtering
for native English speakers with an approval rate above 98%. After
excluding people who failed an attention check or provided low-quality
responses, we were left with 716 participants. The majority (57%) were
between the ages of 25 and 44, and 41% held a four-year degree.

Participants completed a Qualtrics survey, beginning with informed
consent, followed by an attention check and a practice trial designed to
familiarize them with writing natural language takeaways from charts.
Each participant then viewed one randomly selected chart from the
set of 45 described in Sec. 4.4 and reported their primary takeaway.
Participants also provided the year(s) they focused on and the overall
unit of focus (e.g., point, subset). Next, they answered demographic
questions. Participants also reported their familiarity rating for each
chart type, using a five-point scale from ‘1-Not familiar at all’ to ‘5-
Extremely familiar’. The survey took approximately four minutes, and
participants were compensated $0.80 on average.

To analyze responses, we coded participant takeaways according to
the five factors identified in the preliminary study. Since real-world

chart interpretation often includes errors, we included incorrect take-
aways (e.g., incorrect values) in our analysis but focused on the take-
away factors to surface visualization affordances. To ensure reliability,
60% of responses were double-coded by the authors (κ = 0.73). After
independently coding, the authors met to resolve discrepancies. If chart
types afford different factors, we would expect to see that some charts
consistently elicited certain factors more frequently than others. Identi-
fying such patterns could emphasize that certain charts may naturally
guide users toward specific takeaways.

5.2 Results
Over a third of responses (34%) contained multiple factors, with each
takeaway receiving 1.4 factor codes on average. Only 6% of the re-
sponses contained numerical values, suggesting that participants tended
to describe overall patterns rather than specific data points.

Factors by Chart Type. Frequencies of the different factors for each
chart type can be seen in Fig. 4. Across all chart types, Small Trends
were the most frequent factor, followed by Clusters. Through a Chi-
squared analysis, we found significant variation in how different chart
types shaped participant takeaways (χ2 = 46.3,d f = 8, p < 0.001).
Based on the standardized residuals, we extract specific differences in
how each chart type afforded interpretations.

Heatmaps elicited significantly more Clusters takeaways than
other chart types (R = 6.06), suggesting that color encodings may
highlight groupings of similar values. Dot plots were more likely to
yield Shape takeaways (R = 2.43); participants may focus on spatial
arrangements or patterns over time when using this chart type. How-
ever, Shape takeaways were not commonly generated by participants
overall, including for dot plots. Line charts predominantly elicited
Small Trends takeaways (R = 2.09), aligning with their common use
for tracking changes over time. The use of angle encodings may further
enhance the salience of these changes. Clusters takeaways appeared
most with no-change charts; Small Trends takeaways were frequent
for decreasing trends and Large Trends for increasing ones. Overall,
takeaways for line charts and dot plots were similar. These results
support the notion that chart types afford different types of takeaways.

5.3 Method Evaluation
The free-response method provided rich data and mirrored how peo-
ple naturally form takeaways in real-world contexts. This method
uncovered distinct affordance patterns, validating the importance of
chart selection in shaping user takeaways. However, analyzing these
responses was resource-intensive, requiring extensive coding and anal-
ysis, including double-coding to ensure rigor and consistency.

Additionally, some participant responses were ambiguous, leading
the research team to seek clarification through collected secondary
information (i.e., year ranges, unit of focus). On some occasions, this
secondary information was necessary to determine the appropriate
factor. For example, if a response read “Revenue peaked in Year 5,” the
reader could be focusing on the point at Year 5 (Points) or the subset
of years that make up the peak (i.e., Years 4-6; Small Trends). Thus,
we observed that supplementing free-response answers with additional
clarification questions can facilitate more precise interpretations of text,
though this does not make free-response a scalable approach.

6 STUDY 2: RANK CHARTS

This study examines the extent to which the method of ranking of
different chart types can generate findings that align with affordances



Increasing Patterns Decreasing Patterns No Net Change Patterns

Fig. 3: Stimuli datasets shown to participants. Each row displays a line chart and corresponding heatmap for the same data pattern. These 15
patterns were designed to span a range of trends and distributional shapes. Patterns fall into three groups, with five charts in each: increasing,
decreasing, and no net change.

Study 1
What are chart type 
affordances, based 
on free-response 
conclusions?

Small Trends 
were most 
common; 
relatively 
afforded by 
line charts.

Dot plots showed 
relative affordance 
for Shape

Heatmaps 
afforded 
Clusters

Fig. 4: Study 1 results. Small Trends were the most common, partic-
ularly for line charts. In addition to Small Trends, dot plots afforded
Shape, and heatmaps afforded Clusters.

identified in Study 1. Participants ranked charts based on how well they
conveyed a given message corresponding to one of five factors from
the preliminary study. Details on the data, analysis, and participants are
provided in the supplementary materials.

This method offers a structured, comparative way to assess affor-
dances, similar to prior work [25], where participants selected the
visualization that most clearly conveyed a given message. We assessed
whether certain chart types were consistently ranked higher for specific
factors, which would suggest distinct affordances. Results indicated
that chart rankings demonstrated a bias towards line charts and were
correlated with chart type familiarity. Line charts were ranked high-
est overall, followed by dot plots, with heatmaps consistently ranked
lowest. This suggests that while ranking tasks provide a different per-
spective on chart affordances, they may be influenced by participant
familiarity with charts, among other features.

6.1 Participants and Procedure

A power analysis suggested that a sample size of 200 would provide
85% power at α = 0.05. We recruited 270 participants from Pro-
lific [50], applying exclusion criteria as in Study 1. The final sample
consisted of 233 participants with similar demographics to those in
Study 1.

Based on the five factors from the preliminary study (Sec. 4.3, we
created five representative takeaways for each of the 15 data patterns
described in Sec. 4.4 and shown in Fig. 3. These takeaways were
designed to reflect those observed in Study 1. Examples include “Com-
pany revenue decreased from Year 15 to Year 23” (Small Trends)
and “Every few years, revenue drops more and more” (Shape).

Participants were introduced to the chart types and ranking task via
a Qualtrics survey. They were told there was no correct answer and to
rank based on their subjective opinion. After two practice trials, they
were randomly assigned 10 sample takeaways. For each, they viewed
the three chart types displaying the same dataset and ranked them in
order of “how well the charts highlighted the given message.” Finally,

participants reported demographics and chart type familiarity.
This methodology was chosen as a more structured and quicker

alternative to free-response. However, unlike independent evaluations,
ranking exposes participants to multiple chart options at once, which
may shape judgments. While prior work focused only on the display
that makes the message most obvious [25], we collected full rankings
to explore broader interpretation patterns. We analyze both overall
ranking distributions and top-ranked charts.

6.2 Results
Ranking Distributions. Despite expectations that chart rankings would
reveal affordance-driven differences, results showed that chart famil-
iarity was also associated with chart rankings. As illustrated in Fig. 5
line charts were ranked first on average across all factors (57.9% of
rankings). This suggests that participants felt line charts afforded all
takeaways more strongly than other chart types. Dot plots were typically
ranked second (59.0%), and heatmaps were ranked third (75.8%). Us-
ing Durbin tests and post-hoc Conover testing with Holm correction [2],
these differences were significant across all factors (p < 0.004).

Correlation analysis between familiarity ratings and chart rankings
showed a moderate relationship (ρ =−0.61, p < 0.01), suggesting that
more familiar chart types tended to be ranked more highly. Participants
rated line charts as the most familiar (Mean = 4.7,SD = 0.62) and
dot plots (Mean = 4.2,SD = 0.95), and heatmaps the least familiar
(Mean = 1.8,SD = 0.96). While familiarity may offer a partial expla-
nation for these rankings, it is only one contributing factor that we
identified and does not indicate a causal relationship. Line charts may
genuinely be better suited to communicate temporal data, particularly
when participants are prompted to choose the clearest option.

Analysis of First-Ranked Charts. We also conducted an analysis
examining only the charts that participants ranked first, mirroring meth-
ods from Fygensen et al. [25]. Given the strong effect of line charts
observed in the overall ranking task, this analysis provides another win-
dow into participant responses. We find a significant difference in rela-
tive frequencies between chart type and takeaway types (χ2 = 108.8,
d f = 8, p < 0.001). An examination of standardized residuals high-
lights several notable patterns. Heatmaps were ranked first more often
than expected for Clusters (R = 6.12), consistent with Study 1 find-
ings. Line charts were more frequently ranked first for Large Trends
(R = 3.11) and Small Trends (R = 3.63), the latter also aligning with
Study 1. Dot plots tended to be ranked first more than other chart types
for Points (R = 4.61), suggesting they afford fine-grained compar-
isons of specific values. However, this pattern diverges from Study 1,
where Shape was associated with dot plots. These findings suggest
that while top rankings may reflect some underlying affordances, they
do not consistently align with free-response conclusions.

6.3 Method Evaluation
Overall, we found that ranking tasks may be more effective for eval-
uating localized design variations (e.g., bar chart arrangements [25])
than broader design choices like chart type. Although the first-ranked
chart analysis provides clearer affordance signals than full-ranking
data, line charts still accounted for 60% of top selections, limiting the
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Fig. 5: Study 2 results. Left: Distributions of chart type rankings; Line charts were ranked highest overall, followed by dot plots, then heatmaps. Right:
We conducted additional analyses on the highest ranked chart types, demonstrating affordances for heatmaps (Clusters) and line charts (Small
Trends) that aligned with Study 1. Other affordances (i.e., Points for dot plots) were in contrast to Study 1.

ability to draw general conclusions. These preferences likely reflect a
combination of factors, including familiarity and task fit, rather than
affordance alone. If researchers aim to capture impressions of chart fa-
miliarity or prior experience, ranking tasks may provide useful signals.
Overall, when analyzing ranking responses, it’s important to recognize
that rankings may reflect influences beyond affordances.

7 STUDY 3: RANK TAKEAWAYS

This study reverses the ranking charts method in Study 2. We examine
the extent to which ranking takeaways based on how well they are
represented in a given chart aligns with affordances identified with
the free-response methods in Study 1. This method aimed to control
for the chart type bias observed in Study 2 and provide a more clear
evaluation of ranking as a methodology for assessing visualization
affordances. If chart types have distinct affordances, we would expect
to see participants ranking the takeaways differently for each chart type.
For example, to align with the affordances from Study 1, takeaways
regarding Clusters would be ranked highly for heatmaps.

Our results partially support this outcome. Shape conclusions were
ranked highly across all chart types, in contrast to Study 1 findings.
Relative rankings showed some affordance patterns across chart types
but were less comprehensive than free-response insights from Study 1.

7.1 Participants and Procedure
Participant recruitment and power analysis followed the same proce-
dures as Study 2. We recruited 270 participants from Prolific, applying
the same exclusion criteria. The final sample consisted of 231 partici-
pants with similar demographics to previous studies.

Participants completed a Qualtrics survey nearly identical to Study
2, except that they ranked takeaways based on the five factors in the
preliminary study, rather than chart types. In each trial, participants
viewed one chart and ranked five takeaways, one per factor.

This methodology was chosen to address the line chart bias observed
in Study 2. By evaluating conclusions for only one chart type at a time,
participants could not default to a preferred visualization. Instead, this
task encouraged them to assess how well each chart conveyed different
types of takeaways on its own. We also conducted an additional analysis
on the first-ranked conclusion for each chart.

7.2 Results
Shape conclusions were ranked as the most salient across all chart
types, and Points conclusions were consistently the least salient. This
pattern diverges from the free-response findings in Study 1, where
Shape conclusions were the least common and Small Trends were
the most common. However, some ranking differences align with Study
1 findings, particularly for heatmaps and line charts.

Ranking Distributions. Rankings, shown in Fig. 6, varied signifi-
cantly across chart types based on Durbin tests and post-hoc Conover
testing with Holm correction. For line charts, Shape and Small
Trends were ranked as the most salient. Shape was ranked signifi-
cantly higher than all factors (p< 0.013) except Small Trends, which

did not differ significantly from Shape (p = 0.075) or any other factor
(Points: p= 0.231, Large Trends: p= 1.00, Clusters: p= 1.00).
This suggests that while Small Trends were a salient feature of line
charts, Shape appeared to be the dominant affordance.

When viewing heatmap visualizations, participants ranked
Clusters significantly higher than Points (p = 0.009), a finding
not observed in line charts (p = 1.00) or dot plots (p = 1.00). This sug-
gests that heatmaps may uniquely afford Clusters compared to other
chart types, in line with the findings from Study 1. Large Trends
were also ranked higher than Points. This trend was also unique to
heatmaps (line charts: p = 0.723, dot plots: p = 1.00), indicating some
relative affordance for Large Trends. Shape was still ranked highest
for heatmaps overall.

For dot plots, Shape was again the most salient feature. While
this technically overlaps with findings from Study 1, the ubiquitous
salience of Shape across all chart types indicates this was not a unique
affordance of dot plots for this method. The only significant pair-
wise comparison across the factors was between Shape and Points
conclusions (p = 0.01); there were no unique affordances for dot plots.

Analysis of First-Ranked Conclusions. We again conducted a
separate analysis on the first-ranked conclusions for each chart type,
finding that some chart types were more likely to be associated with spe-
cific factors (χ2 = 20.76, d f = 8, p = 0.008). Standardized residuals
reveal several modest but interpretable patterns. Clusters were again
strongly associated with heatmaps (R = 3.31), and Small Trends
were relatively afforded for line charts compared to other chart types
(R = 2.00). Both findings are in line with Study 1 and the first-ranked
chart analysis from Study 2. Dot plots showed only a slight associa-
tion with Points (R = 1.40), consistent with Study 2 but not Study 1.
Pattern-related findings did not align with Study 1. Shape was most
commonly ranked first for chart with no net change, Large Trends
were most afforded for decreasing trends, and Points were most com-
mon for increasing trends.

7.3 Method Evaluation

Results from analyzing the full set of rankings from participants show
closer alignment with Study 1 than Study 2 did, suggesting that ranking
takeaways within a single chart type helped reduce the bias towards
line charts. Overall, these results suggest that the takeaway-ranking
tasks offer a partially reliable window into chart-specific affordances,
though results for dot plots remain inconsistent across methods.

A limitation emerged when comparing results to Study 1: Shape
was least common in free responses but most salient in rankings. Rank-
ing tasks may encourage participants to focus on differences between
provided options, affording different takeaways than methods based
on unconstrained interpretation. It may be that it is more cognitively
complex to generate Shape takeaways, but that Shape tends to be the
more salient takeaway when placed in comparison to other factors.
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Fig. 6: Study 3 results. Left: Distributions of factor rankings. Shape was ranked highest overall, and many factors overlapped. Points tended to be
ranked lowest. Right: Additional analyses on the highest ranked factors, demonstrating affordances for heatmaps (Clusters) and line charts (Small
Trends) that aligned with Studies 1 and 2. Other affordances (i.e., Points for dot plots) were in contrast to Study 1 but aligned with Study 2.

8 STUDY 4: RATE SALIENCE

This study evaluated whether participants’ ratings of takeaway salience
aligned with the affordances observed in free-response interpretations
from Study 1. Visual salience of important information is a common
heuristic for evaluating visualization design [15, 24, 34], motivating our
use of salience as a proxy for affordance. Rather than comparing the
rankings of chart types or takeaways, participants viewed a single chart-
takeaway pair and rated how visually salient the takeaway appeared,
isolating the judgments of visual emphasis.

Our use of scalar salience ratings was informed by similar rating
scales in visualization research; prior work used similar scales to mea-
sure trust [22, 51], aesthetics [3, 33], decision confidence [62, 66], and
display suitability for specific tasks [29]. If chart types afford different
takeaways, specific takeaways would receive higher salience ratings
than others for a given chart type. For example, Clusters would be
rated as more salient for heatmaps compared to other factors.

8.1 Participants and Procedure

A power analysis using G*Power [23] indicated that a sample size
of 171 would provide 90% power at α = 0.05. We recruited 200
participants from Prolific and applied the same filtering criteria, landing
with a final sample size of 172 participants. The demographic profile
was consistent with earlier studies.

Participants completed a Qualtrics survey that followed the same
general format as the previous studies but was adapted for a salience
rating task. Each trial presented a single chart and a caption describing
a specific chart takeaway. “Salient” takeaways were defined as ones
that ‘’stand out from other information in the chart,” and participants
were asked to rate how visually salient the takeaway appeared on a
5-point scale ranging from ‘Not at all salient’ (1) to ‘Very salient’ (5).

Study 4
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Fig. 7: Study 4 results. There were no significant chart-specific af-
fordances. Small Trends were rated highest for all chart types, and
heatmaps consistently received lower ratings than other chart types.

8.2 Results
We analyzed salience ratings across chart-takeaway pairs using an
Analysis of Variance (ANOVA) test with post-hoc Tukey HSD testing.
The ratings can be seen in Fig. 7.

Ratings by Takeaways. There was a significant main effect of take-
away types (p < 0.001). Small Trends received the highest average
salience ratings, significantly more than Large Trends (p < 0.001),
Points (p < 0.001), and Shape (p = 0.001). This finding is consistent
with Study 1, where Small Trends were the most common takeaway.

Ratings by Chart Type.There was also a significant main effect of
chart type (p < 0.001), with heatmaps receiving lower average saliency
ratings across all factors in comparison to line charts (p < 0.001) and
dot plots (p < 0.001). Charts with no net change also received lower av-
erage saliency ratings than both increasing and decreasing trends. This
mirrors the familiarity findings observed in Study 2, where heatmaps
were consistently ranked lowest. However, the interaction between
chart type and takeaways was not significant (p = 0.448), indicating
that participants did not perceive certain takeaways as more salient
in specific chart types than others. These results fail to replicate the
chart-specific affordances observed in Study 1.

Exploratory analysis showed that in heatmaps, the salience ratings
for Shape and Clusters had overlapping standard errors with Small
Trends, suggesting comparable visual emphasis among these factors.
For other charts, the salience ratings of the four non-dominant take-
aways had overlapping standard errors, indicating no meaningful differ-
ences in perceived salience among them.

8.3 Method Evaluation
While this saliency rating method avoided the comparative framing
of ranking tasks, the lack of interaction effects suggests it is not able
to detect affordance differences present when participants generated
their own takeaways in Study 1. The overall trends mirror some of
the frequency patterns from Study 1, but the absence of chart-specific
effects suggests this method may capture general salience patterns of
datasets more than visualization-specific affordances.

9 CASE STUDY: ELICITATION METHODS WITH GPT-4O

Thus far, we have explored three methods for capturing visualization
affordances that are less time-consuming and more tractable than gath-
ering and analyzing natural language responses. In light of recent
academic interest in using LLMs as proxies for human research par-
ticipants (see Sec. 2.3), we next evaluate the ability of GPT-4o, a
state-of-the-art LLM [1], to align with human responses when given
prompts that closely match each elicitation method.

9.1 Approach
We prompted GPT-4o with instructions that closely matched those
given to our human participants in Studies 1-4, using parameters from
recent human-GPT comparison studies in visualization research by
Wang et al. [74]. We then conducted the same analysis used for human
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Fig. 8: Overview of the approach and results of our case study with GPT-4o.

studies and compared the results to human responses from Studies 1-4
(see Fig. 8). Prompts can be found in supplementary materials. This
approach provides an exploration into LLMs as proxies for human sub-
ject participants. Rather than applying extensive prompt engineering or
comparing across models, our goal was to assess how well a straightfor-
ward, out-of-the-box approach performs. In doing so, we offer a novel
and practical starting point for future visualization research on how to
evaluate LLM output [40].

9.2 Results
Overall, we found that GPT-4o output most closely aligned with human
study responses when prompted via the salience rating method (Study
4, Sec. 8). The model suffered from severe constraints for other meth-
ods. Free-response conclusions were largely inaccurate and lacking
in semantic diversity, chart rankings overall contained extremely low
variation, and affordances derived from conclusion rankings aligned
poorly with human responses.

9.2.1 GPT-4o: Free-Response

GPT-4o generated conclusions with many more inaccuracies compared
to human responses. About 97% of human conclusions were accurate,
as opposed to 63% of GPT-4o conclusions contained. We document
types of inaccuracies from both humans and GPT-4o in Tab. 1, where
multiple types of inaccuracies could apply to a single conclusion.

Inaccuracy Type Source Count Percentage By Chart Type

Inaccurate Trend(s) Human 9 1.2% 5 heat, 4 line
GPT-4o 83 12.3% 83 heat

Inaccurate Value(s) Human 7 0.9% 2 dot, 1 heat, 4 line
GPT-4o 137 20.3% 57 dot, 46 heat, 34 line

Likely Typo(s) Human 8 1.1% 5 dot, 1 heat, 2 line
GPT-4o – – –

Incorrect Cycle(s) Human – – –
GPT-4o 58 8.5% 29 dot, 1 heat, 28 line

Table 1: Types of inaccuracies from human and GPT-4o free response.

Beyond these inaccuracies, GPT-4o generated conclusions that var-
ied significantly in structure and content from human responses. Re-
sponses generated by GPT-4o more often contained multiple takeaway
factors (GPT-4o: 78%, Human: 34%). GPT-4o was also more inclined
to include specific data values in its conclusions (GPT-4o: 26%, Hu-
man: 6%). As a result of the increased prevalence of specific values,
the Points factor was most common in conclusions from GPT-4o, as
opposed to Small Trends for humans.

Affordances derived from GPT-4o free responses aligned only par-
tially with affordances from human responses. We observed significant
variations in factors across chart types (χ2 = 46.3,d f = 8, p < 0.001),
with differences visualized in Fig. 8A. Across all chart types, GPT-4o
generated more Points conclusions than humans. For dot plots in
particular, GPT-4o did not capture Large Trends or Shape with the
same frequency as humans, although it generated a comparable propor-
tion of Clusters. For heatmaps, GPT-4o aligned poorly overall with
humans, completely missing the prevalence of Clusters and Small
Trends conclusions. GPT-4o aligned more closely to responses from

humans for line charts than other chart types, although it generated
greater proportions of Clusters and Large Trends takeaways.

9.2.2 GPT-4o: Rank Charts
GPT-4o emulated the bias towards line charts observed in humans via
a strong preference for line charts. However, there was almost no
variation in GPT-4o rankings; line charts were almost always ranked
first (91% of rankings) by GPT-4o, dot plots (91%), and heatmaps
third (99%). Using Durbin tests and post-hoc Conover testing with
Holm correction, these differences were significant across all factors
(p < 0.001). GPT-4o demonstrated significant limitations in variability
compared to human responses. Heatmaps were ranked first or second
for only 0.01% (7) of the GPT-4o rankings, while humans ranked them
first or second for 24% (565) of responses.

Affordances across GPT-4o first-ranked charts partially aligned with
human affordances. The distribution of GPT-4o first-ranked charts was
not uniform across factors, shown in Fig. 8B (χ2 = 89.15, d f = 8,
p < 0.001). For both human and GPT-4o, first-ranked line charts best
captured Small Trends. We could not extract GPT-4o affordances for
heatmaps due to the low number of first-rankings compared to human
responses. GPT-4o first-ranked dotplots afforded Clusters, while
human responses indicated that dotplots afforded Points.

9.2.3 GPT-4o: Rank Takeaways
GPT-4o generated overall poorly aligned relative takeaway rankings as
compared to humans. The rankings elicited from this method differed
greatly from rankings provided by humans, particularly for dot plots
and line charts. As seen in Fig. 8C, GPT-4o demonstrated an undue
preference for Large Trends; human responses tended to rank Shape
highest. While Large Trends were also ranked highly by humans,
GPT-4o overrepresented the salience of Large Trends with substan-
tially higher proportions of first rankings for all chart types. Like-
wise, GPT-4o failed to capture the relative affordance of Clusters
for heatmaps and Small Trends for line charts. While Points and
Shape may be relatively afforded for dot plots (similar to human re-
sponses), the overall impact of Large Trends dwarfs this observation.
Overall, affordances derived from across GPT-4o ranked takeaways
aligned poorly with affordances from human rankings.

9.2.4 GPT-4o: Rate Salience
GPT-4o generated salience ratings that partially aligned with human
responses. Post-hoc Tukey HSD testing revealed a significant main
effect of chart type and factor for GPT-4o ratings (p < 0.001). Overall,
Small Trends takeaways received higher average salience ratings for
humans and GPT-4o, see Fig. 8D. Takeaways paired with heatmaps
received lower average ratings for both human and GPT-4o responses.

However, affordances by chart type differed slightly. We found
two significant interactions between takeaway factor and chart type for
GPT-4o responses; this interaction was not present for human responses.
Small Trends and Points takeaways were rated significantly more
salient than Shape for heatmaps. Therefore, while saliency ratings
for humans indicated no significant chart-specific affordances, GPT-4o
seemed more sensitive to heatmaps. However, these affordances for
heatmaps are not consistent with the overall findings from the human
studies, which suggest that heatmaps afford Clusters.



9.3 GPT-4o Evaluation
Our results overall suggest that GPT-4o may not be a reliable proxy
for human subjects when studying visualization affordances. However,
analyzing output from each of the four study-based prompts resulted
in useful insights into specifics of how GPT-4o compared to humans.
The prompt requesting free-response output highlighted distinct factual
inaccuracies (predominantly with heatmaps) and prompts outlining the
ranking tasks revealed strong model preferences for line charts and
large trend conclusions. The prompt asking for salience ratings was the
most promising for matching human responses.

10 DISCUSSION

We evaluated multiple elicitation methods for identifying visualization
affordances, with the goal of finding a more scalable alternative to free-
response tasks. In this section, we synthesize takeaways for researchers
selecting methods to study visualization affordances.
Methodology Trade-offs: Overall Salience vs. Specific Affordances.
The structured methods we tested (ranking charts, ranking conclusions,
and rating salience) each offered partial insight into visualization af-
fordances but also introduced systematic limitations. These findings
suggest that while quick methods may offer reasonable proxies, they
are prone to biases that must be carefully considered. Line charts, for
example, were consistently ranked highest across ranking tasks; this
likely reflects genuine affordances for identifying trends but was also
associated with familiarity, among other possible factors. If one were
to evaluate these results in isolation, it would be tempting to conclude
that line charts are universally the best chart type. However, this is
not true (e.g., [10]); Study 1 showed that different chart types elicit
different types of conclusions.

Both ranking and rating methods revealed selective alignment with
affordance patterns from the free-response study. Salience ratings
aligned fairly closely with free-response frequencies. Small Trends,
for example, emerged as both common and highly salient. However,
the lack of interaction effects in Study 4 indicates that participants
rated factors similarly across chart types, limiting the ability to detect
chart-specific affordances. Ranking tasks revealed more differences
but introduced comparison effects. For example, Shape conclusions
were rarely generated in Study 1 but often ranked highly in Study 3,
suggesting that comparison may have elevated their perceived salience.

Together, these studies suggest that “what appears most salient” and
“what takeaways come intuitively to people” are not always equiva-
lent. Research methodology will impact outcomes. Ranking and rating
methods may highlight the most visually emphasized patterns in data,
particularly when participants are presented with multiple options. In
contrast, free-response tasks better capture what participants sponta-
neously derive from visualizations.
Combining Methods for Studying Affordances. When reducing
research overhead such as participant burden or effortful qualitative
coding analysis, combining elicitation methods may offer a promising
way forward. Salience ratings and conclusion rankings both preserved
some of the affordance signals found in free responses, particularly
for heatmaps and line charts. Taken together, these methods could
triangulate patterns that approximate those found in open-ended tasks.
Combinations of ranking and rating methodologies can shed light on
chart takeaways across different visualization designs. However, to
fully understand patterns people see in data, human free-response re-
mains the most complete method.
Specific Affordances for Chart Types. Based on the results from
Studies 1-4, we can propose a set of affordances for the three chart
types examined. Heatmaps most clearly afford Clusters and line
charts afford Small Trends. Dot plots afford Shape conclusions
under certain conditions, but this affordance was less consistent across
studies; ranking procedures indicated that dot plots afforded Points.
As such, we did not find converging evidence for specific affordances
for dot plots. Both Points and Shape could be potential affordances,
depending on the elicitation method.

We found that Large Trends and Small Trends conclusions
were common in charts with increasing or decreasing trends, while

Clusters and Shape were frequent when there was no net change.
We found no interaction between chart type and data pattern. This
suggests that certain data trends, which designers have little control
over, may afford different takeaways, independent of visual encoding.
Considerations for Evaluating LLMs as Human Proxies in Chart
Interpretation. From our case study, we concluded that prompting
GPT-4o to provide salience ratings for possible takeaways provided
a comparable analysis of visualization affordances but was less suc-
cessful than human elicitation methods. In addition, we found that our
approach of testing GPT-4o with various prompts based on human study
instructions resulted in a variety of insights that informed GPT-4o’s
capability to interpret charts in a human-like manner. Thus, we posit
that future research related to LLM chart interpretation capabilities may
benefit from similar explorations of LLM prompting based on human
study methods. Evaluations of the model output can then involve a
comparison of LLMs to humans, serving as a preliminary step to direct
more refined prompt engineering efforts by researchers.

11 LIMITATIONS AND FUTURE WORK

While our studies reveal useful patterns for evaluating visualization
affordances, several limitations shape the interpretation of our findings
and point to important directions for future work.

First, our studies focused on time series data, using only three chart
types and fifteen datasets. While the chart types tested differed in encod-
ing (position vs. color), we acknowledge they may not yield strongly
contrasting affordances; future work could expand this approach to
include richer chart types or include text elements to test whether
stronger affordance signals emerge. Future work should examine a
broader range of visualization and data types.

Additionally, participants viewed visualizations without context,
which helped us isolate design effects but differed from real-world,
task-driven interpretation. Existing research has shown that user tasks
can dictate takeaways from visualizations [44]. Our interpretation of
affordances relied on factors derived from a preliminary study with
time-series data. These factors may not fully reflect the range of inter-
pretations users could generate for other task contexts or data types.
Future research could explore how elicitation methods vary for task-
driven conditions (e.g., evacuation decisions in disasters) to assess
further method-specific affordances.

Study 2, where participants compared multiple charts, mirrors real-
world visualization recommendation tools [75]. Participants showed a
preference for line charts, which were more familiar, highlighting the
need for such tools to consider user biases in recommendation design.

While the primary focus of this work was on human interpretation,
we also evaluated the use of LLMs as human proxies, using only a single
prompt structure per method. LLM output can be sensitive to changes in
the prompt [41]. Future work should improve LLM responses through
systematic prompt engineering using existing optimization tools and
metrics [53, 68]. Future work can also consider alternative tasks, such
as asking LLMs to predict the takeaway of a specific person, given
details about their characteristics (e.g., personality or literacy) [20].

12 CONCLUSION

While structured methods like ranking and salience rating can approxi-
mate certain aspects of visualization affordances, they do not fully cap-
ture the richness or nuance of free-response from user studies. Ranking
tasks demonstrated how comparisons can shift perceptions of chart af-
fordances; salience ratings failed to reflect chart-specific effects. These
differences between methods reveal that designer choices, as well as
researcher choices (i.e., how affordances are elicited), can shape what
people take away from data and visualizations.
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